
Top-k Team Recommendation and Its Variants in Spatial
Crowdsourcing

Dawei Gao1 • Yongxin Tong1 • Jieying She2 • Tianshu Song1 • Lei Chen2 •

Ke Xu1

Received: 2 December 2016 / Revised: 2 March 2017 / Accepted: 5 March 2017

� The Author(s) 2017. This article is an open access publication

Abstract With the rapid development of mobile internet

and online to offline marketing model, various spatial

crowdsourcing platforms, such as Gigwalk and Gmission,

are getting popular. Most existing studies assume that

spatial crowdsourced tasks are simple and trivial. However,

many real crowdsourced tasks are complex and need to be

collaboratively finished by a team of crowd workers with

different skills. Therefore, an important issue of spatial

crowdsourcing platforms is to recommend some suit-

able teams of crowd workers to satisfy the requirements of

skills in a task. In this paper, to address the issue, we first

propose a more practical problem, called Top-k team rec-

ommendation in spatial crowdsourcing (TopkTR) problem.

We prove that the TopkTR problem is NP-hard and designs

a two-level-based framework, which includes an

approximation algorithm with provable approximation

ratio and an exact algorithm with pruning techniques to

address it. In addition, we study a variant of the TopkTR

problem, called TopkTRL, where a team leader is

appointed among each recommended team of crowd

workers in order to coordinate different crowd workers

conveniently, and the aforementioned framework can be

extended to address this variant. Finally, we verify the

effectiveness and efficiency of the proposed methods

through extensive experiments on real and synthetic

datasets.

Keywords Spatial crowdsourcing � Top-k � Teams �
Leader

1 Introduction

Recently, thanks to the development and wide use of

smartphones and mobile Internet, the studies of crowd-

sourcing are switching from traditional crowdsourcing

problems [1–5] to the issues in spatial crowdsourcing mar-

kets, such as Gigwalk, Waze and Gmission, where crowd

workers (workers for short in this paper) are paid to perform

spatial crowsourced tasks (tasks for short in this paper) that

are requested on a mobile crowdsourcing platform [6, 7].

Most existing studies on spatial crowdsourcing mainly

focus on the problems of task assignment [6–12], which are

to assign tasks to suitable workers, and assume that tasks

are all simple and trivial. However, in real applications,

there are many complex spatial crowdsourced tasks, which

often need to be collaboratively completed by a team of

crowd workers with different skills. Imagine the following

scenario. David is a social enthusiast and usually organizes

different types of parties on weekends. On the coming

& Yongxin Tong

yxtong@buaa.edu.cn

Dawei Gao

david_gao@buaa.edu.cn

Jieying She

jshe@cse.ust.hk

Tianshu Song

songts@buaa.edu.cn

Lei Chen

leichen@cse.ust.hk

Ke Xu

kexu@buaa.edu.cn

1 State Key Laboratory of Software Development

Environment, School of Computer Science and Engineering,

Beihang University, Beijing, China

2 Department of Computer Science and Engineering, Hong

Kong University of Science and Technology,

Clear Water Bay, Kowloon, Hong Kong SAR, China

123

Data Sci. Eng.

DOI 10.1007/s41019-017-0037-1

http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-017-0037-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-017-0037-1&domain=pdf

Saturday, he intends to hold a dance party and needs to

recruit some sound engineers, guitarists, cooks and dan-

cers. However, David faces a dilemma that his limited

budget cannot afford to recruit all the aforementioned

workers. He has to recruit fewer cheap crowd workers who

have multiple skills and can take up several responsibili-

ties, e.g., a worker can play the guitar and also manage the

sound systems. Therefore, David posts his tasks on a spatial

crowdsourcing platform, Gigwalk,1 and wants to find cheap

crowd workers to satisfy his requirements. In fact, many

task requestors have the same appeal: can spatial crowd-

sourcing platforms recommend several cheaper candidate

teams of crowd workers who can satisfy the multiple skills

requirement of the tasks?

Besides satisfying the multiple skills requirement of the

tasks, an ideal team of crowd workers is still expected to

have a team leader to coordinate different crowd workers

and the task requestor in real applications. Back to the

aforementioned scenario about David, if a candidate team

has a conversable team leader, Bob, who can coordinate

with David and other crowd workers, David will prefer the

team leaded by Bob. As the approaches which only con-

sider the cost of teams and the multiple skills requirement

of the task cannot be suitable for the requirement of team

leaders since the friendship of crowd workers is not con-

sidered, another challenge for an intelligent spatial

crowdsourcing platform is to discover who is suitable to be

a team leader in the recommended team satisfying the

multiple skills requirement of the task.

To further illustrate this motivation, we go through a toy

example as follows.

Example 1 Suppose we have five crowd workers w1 � w5

on a spatial crowdsourcing platform, whose locations are

shown in a 2D space (X, Y) in Fig. 1a. Each worker owns

different skills, which are shown in the second row in

Table 1. Furthermore, each worker has a price for each task

and a capacity, which is the maximum number of skills that

can be used in a task that he/she performs, which are

presented in the third and forth rows in Table 1. Moreover,

a team-oriented spatial crowdsourced task and its locality

range (the dotted circle) are shown in Fig. 1a. Particularly,

the task requires that the recruited crowd workers must

cover three skills, {e1; e2; e3}. To help the task requestor

save cost, the spatial crowdsourcing platform usually rec-

ommends top-k cheapest teams of crowd workers, who can

satisfy the requirement of skills. Furthermore, the recom-

mended teams should not have free riders. In other words,

each recommended team cannot satisfy the required skills

if any worker in the team leaves. Therefore, in this

example, the top-2 cheapest teams without free riders are

{w2;w3} and {w1;w3}, respectively, if the parameter

k ¼ 2.

Besides, Fig. 1b shows the relationship among the above

five crowd workers. In Fig. 1b, each vertex corresponds to a

crowd worker, and the weight of each edge represents the

collaborative cost or the friendship between the correspond-

ing two crowdworkers. Especially, all the weights in Fig. 1b

are normalized into the range [0, 1], and the smaller weight of

two arbitrary vertices in Fig. 1b indicates the lower collab-

orative cost and the better friendship between the corre-

sponding crowd workers. In this case, we already know that

the top-2 cheapest teams without considering friendship are

{w2;w3} and {w1;w3}. We observe that the collaborative

costs of {w2;w3} and {w1;w3} are 0.8 and 0.3, respectively.

If the platform hopes that the recommended teams have

lower collaborative cost and sets the budget of the collab-

orative cost to 0.6, the team {w2;w3} cannot be returned as

the result even if it is the cheapest team.

As discussed above, we propose a novel team recom-

mendation problem in spatial crowdsourcing, called the

Top-k team recommendation in spatial crowdsourcing

(TopkTR) problem. As the example above indicates, the

TopkTR problem not only recommends k cheapest teams

but also satisfies the constraints of spatial range and skill

requirement of tasks, capacity of workers and no free rider

in teams. Notice that the Top-1TR problem can be reduced

to the classical team formation problem if the constraints

on the capacity of workers and free riders are removed.

More importantly, the TopkTR problem needs to return

(a) (b)

Fig. 1 Location information and friendship. a Locations of the

task/workers. b Friendship among the workers

Table 1 Skill, payoff and capacity information of crowd workers

w1 w2 w3 w4 w5

Skills {e1; e2} {e1} {e2; e3} {e2} {e1; e2; e3}

Price 2 1 3 1 2

Capacity 1 1 2 1 1

1 http://www.gigwalk.com.

D. Gao et al.

123

http://www.gigwalk.com

k teams instead of the cheapest team, which is its main

challenge. In addition, we study a variant of the TopkTR

problem, called Top-k team recommendation with leaders

in spatial crowdsourcing (TopkTRL), which adds a new

requirement that the crowd workers in the recommended

teams have low collaborative costs or good friendship

according to their historical collaborative records.

In summary, we make the following contributions. Note

that different to our preliminary work [13], we make new

contributions by proposing the TopkTRL problem and

developing a new approximation algorithm extended from

the framework solving the TopkTR problem.

• We identify a new type of team-oriented spatial

crowdsourcing applications and formally define it as

the Top-k team recommendation in spatial crowd-

sourcing (TopkTR) problem and its variant, called the

TopkTRL problem. Then, we prove that both the

TopkTR and TopkTRL problems are NP-hard.

• For the TopkTR problem, we design a two-level-based

framework, which not only includes an exact algorithm

to provide the exact solution but also can seamlessly

integrate an approximation algorithm to guarantee

ln jEtj theoretical approximation ratio, where jEtj is

the number of required skills of the task.

• For the TopkTRL problem, we extend the aforemen-

tioned two-level-based framework to address this

variant, which has the same approximation ratio.

• We verify the effectiveness and efficiency of the

proposed methods through extensive experiments on

real and synthetic datasets.

The rest of the paper is organized as follows. In Sect. 2, we

formally define the TopkTR problem and its variant, called

the TopkTRL problem, and prove their NP-hardness. In

Sect. 3, we present a two-level-based framework and its

exact and approximation solutions. Moreover, the new

algorithm which is extended from the aforementioned

framework is proposed to address the TopkTRL problem in

Sect. 4. Extensive experiments on both synthetic and real

datasets are presented in Sect. 5. We review related works

and conclude this paper in Sects. 6 and 7, respectively.

2 Problem Statement

In this section, we first formally define the TopkTR prob-

lem and, then, formulate the variant of the TopkTR prob-

lem, called the TopkTRL problem.

2.1 TopkTR Problem

In this subsection, we formally define the Top-k team

recommendation in spatial crowdsourcing (TopkTR)

problem and prove that this problem is NP-hard. For con-

venience of discussion, we assume E ¼ he1; . . .; emi to be

the universe of m skills.

Definition 1 (Team-oriented spatial crowdsourced task)

A team-oriented spatial crowdsourced task (‘‘task’’ for

short), denoted by t ¼ hlt;Et; rti, at location lt in a 2D

space is posted to the crowd workers, who are located in

the circular range with the radius rt around lt, on the

platform. Furthermore, Et � E is the set of the required

skills of the task t for the recruited team of crowd workers.

Definition 2 (Crowd worker) A crowd worker (‘‘worker’’

for short) is denoted by w ¼ hlw;Ew; pw; cwi, where lw is the

location of the worker in a 2D space, Ew � E is the set of

skills that the worker is good at, pw is the payoff for the

worker to complete a crowdsourced task, and cw is the

capacity of the worker, namely the maximum number of

skills used by the worker to complete a crowdsourced task.

Note that the team-oriented spatial crowdsourced tasks

studied in this paper, e.g., organizing a party, renovating a

room, usually need to be completed in teams. Though a

worker may be good at multiple required skills, he/she

cannot finish all the works by himself/herself. Therefore,

we limit the capacity of each worker to balance the

workload of the whole team. To simplify the problem, we

assume that each worker receives the same payoff for

different tasks since the capacity of the used skills of each

user can be restricted. On the one hand, these workers often

have similar workloads and do not need a team leader to do

a task. On the other hand, our model can be also easily

extended to address the scenario where workers ask for

different rewards for his/her different skills. Finally, we

define our problem as follows.

Definition 3 (TopkTR problem) Given a team-oriented

spatial crowdsourced task t, a set of crowd workers W, and

the number of recommended crowdsourced teams k, the

TopkTR problem is to find k crowdsourced teams,

{g1; . . .; gk} (8gi � W ; 1� i� k) with k minimum

CostðgiÞ ¼
P

w2gi pw such that the following constraints

are satisfied:

• Skill constraint: each required skill is covered by the

skills of at least one worker.

• Range constraint: each worker w 2 gi must locate in the

restricted range of the task t.

• Capacity constraint: the number of skills used by each

worker w 2 gi cannot exceed w’s capacity cw.

• Free-rider constraint: no team still satisfies the skill

constraint if any worker in the team leaves.

Theorem 1 The TopkTR problem is NP-hard.

Top-k Team Recommendation and Its Variants in Spatial Crowdsourcing

123

Proof When k ¼ 1 and the capacity constraint is ignored,

such special case of the TopkTR problem is equivalent to

the team formation problem [14], which has been proven to

be NP-hard. Therefore, the TopkTR problem is also an NP-

hard problem. h

2.2 TopkTRL Problem

In this subsection, we further formally define the TopkTRL

problem, which is a variant of the TopkTR problem that

considers a team leader for each recommended team.

Notice that the team leader in a specific crowdsourced team

is also a crowd worker in the team. We first define the

concepts of the relationship network of all the crowd

workers and the collaborative cost for a team leader in a

crowdsourcd team and then describe the definition of the

TopkTRL problem.

Definition 4 (Relationship network of crowd workers)

Given a set of crowd workers W, the relationship network

of crowd workers in W is represented as a graph

G ¼ ðW ;FÞ, where each vertex in G is a crowd worker, and

an edge of any two crowd workers (vertices) wi and wj

ewi;wj
2 F measures the friendship between wi and wj.

Notice that the weight of an edge is evaluated by an arbi-

trary function, which is denoted by the d(., .) and is nor-

malized to the range [0, 1]. In particular, the smaller weight

of two crowd workers represents the better friendship of

the two crowd workers.

According to the relationship network of crowd workers,

we define the collaborative cost of a given team leader in a

crowdsourced team.

Definition 5 (Collaborative cost of a team leader) Given

a relationship network of crowd workers G(W, F), a

crowdsourced team g of crowd workers and a team leader l,

the collaborative cost of the team leader l is defined as

CCðg; lÞ ¼
X

w2g
dðw; lÞ

where dð:; :Þ 2 ½0; 1� is the weight function between two

crowd workers.

Definition 6 (TopkTRL problem) Given a team-oriented

spatial crowdsourced task t, a set of crowd workers W, the

number of recommended crowdsourced teams k, and a

budget B of collaborative cost, the TopkTRL problem is to

find k crowdsourced teams fg1; . . .; gkgð8gi � W ; 1 6

i 6 kÞ, each of which gi has a team leader li 2 gi, with k

minimum CostðgiÞ ¼
P

w2gi pw such that the following

constraints are satisfied:

• Collaborative cost constraint: the collaborative cost of

each team leader li is lower than and equal to the given

budget B, namely CCðgi; liÞ�B; 8i 2 f1; . . .; kg.
• The four constraints of TopkTR are satisfied.

Notice that the most important constraint of the

TopkTRL problem is the collaborative cost constraint,

which measures the friendship in the team consisting of

crowd workers.

Similar to the TopkTR problem, the TopkTRL problem

is also proven as to be NP-hard.

Theorem 2 The TopkTRL is NP-hard.

Proof The TopkTR problem is a special case of the

TopkTRL problem when the budget of the collaborative

cost is equal to the cardinality of the given set of crowd

workers. Based on Theorem 1, we know the TopkTR

problem is NP-hard, so the TopkTRL problem is also NP-

hard. h

D. Gao et al.

123

3 A Two-Level-Based Framework

To solve the problem effectively, we present a two-level-

based algorithm framework. The first level aims to find the

current top-1 feasible team with the minimum price, and

the second level utilizes the function in the first level to

iteratively maintain the top-k best teams. Particularly, the

two-level-based framework has a nice property that the

whole algorithm can keep the same approximation guar-

antee of the algorithm as in the first level.

3.1 Overview of the Framework

The main idea of the two-level framework is that the top-2

best team can be discovered if and only if the top-1 best team

is found first. In other words, after excluding the top-1 best

team from the solution space, not only the size of the solution

space is shrunken, but also the global top-2 best teammust be

the local top-1 best team in the shrunken solution space. The

function of finding the local top-1 best team is denoted as the

top-1 function in the first level, which will be described in

details as the approximation algorithm and the exact algo-

rithm in Sects. 3.2 and 3.3, respectively.

The framework is shown in Algorithm 1. We first ini-

tialize an empty priority queue of teams Queue, which sorts

the elements in non-decreasing prices of the teams, and the

top-k teams G in lines 1–2. In line 2, we use a given

algorithm, which can be exact or approximate, to get the

exact or approximate top-1 team and insert it into Queue.

In lines 4–10, if Queue is not empty, we get the top element

res of Queue and insert res into G. For each w in res, we

reduce the solution space of res to Wres� fwg, find a

solution in it, and insert the solution into Queue. We repeat

this procedure until we get k teams.

As introduced above, the framework has a nice property

that the whole algorithm can keep the same approximation

guarantee of the algorithm (top-1 function) in the first level.

Theorem 3 If the top-1 function top-1(.,.) in the frame-

work is an approximation algorithm with approximate

ratio of r, the approximate cost of the i-th team in the

approximation top-k teams by the framework keeps the

same approximate ratio compared to the cost of the cor-

responding i-th exact team.

Proof We represent the approximation top-k teams gen-

erated by the framework as {ga1; . . .; g
a
k}, and the exact top-

k teams is denoted as {gex1 ; . . .; g
ex
k }. Because the top-1

function top-1(.,.) has approximate ratio of r,

Cost(ga1)� r� Cost(gex1). When the framework excludes ga1
from the solution space and utilizes the top-1 function to

obtain the other local top-1 team, it has the following two

cases: (1) if ga1 ¼ gex1 , we have ga2 � r � gex2 ; (2) ga1 6¼ gex1 ,

ga2 � r � gex1 . h

3.2 Top-1 Approximation Algorithm

The main idea of the top-1 approximation algorithm uti-

lizes the greedy strategy to choose the best worker w, who

can bring the maximum gain to the current partial team g.

Algorithm 2 illustrates the top-1 approximation algorithm.

We first initialize a empty team g in line 1. In lines 2–4,

when g cannot satisfy the requirement of skills of the task t,

denoted by Et, the algorithm selects a worker w with the

maximum ratio of the gain and price for the current team.

The function MAXITEM(.) is used to calculate the number

of skills in Et that can be covered by a specific team. In line

5, since g may contain free-rider workers, we have to refine

the team to eliminate redundant workers. Notice that we

only need to scan all workers in the team g by the selected

order when the these redundant workers are deleted.

Example 2 Back to our running example in Example 1. The

running process of the top-1 approximation algorithm is

shown in Table 2, where we mark the largest benefit of each

round in bold font. In the first round, we choose w2 with the

biggest benefit 1. Since fw2g cannot handle the task, we

proceed to choose w3 with the biggest benefit of
2
3
. Now, we

can handle the task with fw2;w3g and the price is 4.

Approximation Ratio The approximation ratio of the

algorithm is Oðln jEtjÞ. Inspired by Majumder et al. [15], it

is easy to get the approximation ratio of Algorithm 2. Due

to the limited space, the details of the approximation ratio

proof are omitted in this paper.

Top-k Team Recommendation and Its Variants in Spatial Crowdsourcing

123

Complexity Analysis The time consumed by MAXITEM is

OðjEtj2 logðjEtjÞÞ. Line 3 will be executed at most jEtj
times. The refine step takes OðjW jjEtjÞ time. Thus, the total

time complexity is OðjW jjEtj3 logðjEtjÞ þ jW jjEtjÞ. Since
jEtj is usually very small in real applications, the algorithm

is still efficient.

Finally, the following example illustrates the whole

process of the complete approximation algorithm based on

the two-level-based framework.

Example 3 Back to our running example in Example 1.

Suppose k ¼ 2 and the required skills of the task

t ¼ fe1; e2; e3g. We first use the Top-1 greedy approxima-

tion algorithm to get a teamof fw1;w3g in the first level of the
framework. Then, we continue to adopt the Top-1 greedy

approximation algorithm to find the local top-1 teams from

W � fw1g andW � fw3g. The returned teams are fw1;w3g
and£, respectively. Thus, the final top-2 teams generated by

the whole framework are fw2;w3g and fw1;w3g.

3.3 Top-1 Exact Algorithm

Since the number of skills required by a task is often not

large, the main idea of the Top-1 exact algorithm is to

enumerate the cover state of every proper subset of the

intersection of the skills between a worker and a task. We

give the definition of cover state as follows.

Definition 7 (Cover state) Each cover state s ¼
hE0;W 0; pi consists of the covered skill set E0, the worker

set W 0 in which each worker participates in covering E0. p
is the total price of the workers in W 0.

For each proper subset, we maintain a cover state of the

covered skills and the total price of workers. We update the

global cover state when processing each worker. When we

have processed all the workers, the cover states of all the

required skills of the task are the exact solution.

The exact algorithm is shown in Algorithm 3.We first get

a approximate solution using a greedy algorithm and store

the price of the solution in Cg in line 1. We then initialize

state to store the currently best cover states for different skill

sets. In lines 4–10, we successively process each worker in

W. For workerw, ifwp is not larger thanCg, we enumerate all

the cover states of wp. For each cover state c, we combine it

with cover state state. If the combined price is not larger than

Cg, we store the current cover state in temp state. We finally

store c in temp state and use it to update state. After we have

processed all the workers in W, we check the cover state of

the required skills of task t and its associated team is the best

team. In line 4 and line 7, we adopt two pruning strategies. In

line 4, we use Cg to prune a single worker whose price is too

high. In line 7, we use Cg to prune a new cover state whose

price is too high.

Example 4 Back to our running example in Example 1.

We first use the top-1 approximation algorithm shown in

Algorithm 2 to get an approximate solution T ¼ fw2;w3g
with total price of 4, which is used as the current lower

bound. Then, we maintain the cover state using a triple

structure, which contains the covered skills, the workers

and the total price of the current optimal team for each

possible combination of the required skills. w1 can cover

skill 1 or 2 with price 2, which is less than the lower bound

of 4, so the cover state of w1 can be

fhfe1g; fw1g; 2i; hfe2g; fw1g; 2ig. As w1 is the first worker

we process, we just update the current best cover state as

Table 2 Running process of

Top-1 approximation algorithm
Round w1 w2 w3

1 1/2 1 2/3

2 1/2 2/3

The largest benefit of each

round are shown in bold

D. Gao et al.

123

fhfe1g; fw1g; 2i; hfe2g; fw1g; 2ig. We then proceed to

process w2. We combine the only cover state,

hfe1g; fw2g; 1i with the cover states in state, and then, we

get a new cover state of hfe1; e2g; fw1;w2g; 2i. After pro-
cessing w2, the current best cover state is fhfe1g;
fw2g; 1i; hfe2g; fw1g; 2i; hfe1; e2g; fw1;w2g; 3i. We can

process w3 similarly and the final cover state is

fhfe1g; fw2g; 1i; hfe2g; fw1g; 2i, hfe1; e2g; fw1;w2g; 3i;
hfe2; e3g; fw3g; 3i; hfe1; e2; e3g; fw2;w3g; 4ig and the best

team is fw2;w3g.

Complexity Analysis Line 3 runs |W| times, line 5 runs

CðjEtj; jEtj=2Þ times, and line 8 runs 2jEt j times. Therefore,

the total time complexity is OðjW jð2jEt jÞÞ. When jEtj is not
too large, the exact algorithm can be used.

4 Solutions of TopkTRL

In this section, we extend the above two-level-based

framework to address the TopkTRL problem, which not

only recommends k crowdsourced teams satisfying all the

constraints of the TopkTR problem but also assigns a team

leader for each recommended team.

The basic idea of the extended framework is to check

whether a certain crowd worker of the first team in Queue

can be assigned as the leader. If such crowd worker exists,

we assign her/him as the leader and return the team as one

of the top-k teams. Otherwise, we skip the team and con-

tinue to search other teams from the solution space which

excludes the team skipped.

The extended framework is shown in Algorithm 4. We

first initialize an empty priority queue of teams Queue,

which sorts the elements in non-decreasing prices of the

teams, and the top-k teams G in lines 1–2. In line 3, we use

a given algorithm, which can be exact or approximate, to

get the exact or approximate top-1 team and insert it into

Queue. In line 4, we get the top element res of Queue.

Different from Algorithm 1 which inserts res into G

directly, in lines 5–8 we check whether the collaborative

cost of a certain crowd worker wl in res satisfies the col-

laborative cost constraint, which means s/he can be

assigned as the leader. If a leader can be found, we insert

res into G. In lines 11–13, for each w in res, we reduce the

solution space of res to Wres� fwg, find a solution in it

and insert the solution into Queue. We repeat this proce-

dure until we get k teams.

Example 5 Back to the running example in Example 1.

We still suppose k ¼ 2, the required skills of the task t ¼
fe1; e2; e3g and the given budget is 0.6. The social network

of workers is shown in Fig. 1b. We first use the Top-1

greedy approximation function to get a team of fw1;w3g.
Then, we traverse the crowd workers in the team and assign

w1 as the leader. When continuing to run the top-1 function

to find the local top-1 team from W � fw1g andW � fw3g,
we find fw2;w3g as the local optimal team. However, the

collaborative cost between w2 and w3 is larger than the

given budget and thus there is no team in the solution space

that can cover the required skills. Finally, there is only one

team fw1;w3g with leader w1 satisfying all the constraints.

We next show that the extended framework also has the

nice property shown in Theorem 4.

Theorem 4 If the top-1 function top-1(.,.) in the extended

framework is an approximation algorithm with approxi-

mate ratio of r, the approximate cost of the i-th team in the

approximation top-k teams recommended by the extended

Top-k Team Recommendation and Its Variants in Spatial Crowdsourcing

123

framework keeps the same approximate ratio compared to

the cost of the corresponding i-th exact team.

Proof We use Algorithm 2 as the top-1 function. For the

TopkTR problem, we represent the cheapest team gener-

ated by Algorithm 2 as ta, the exact cheapest team is

denoted by tex, and the approximation ratio is r. When

considering the problem with leader, the exact team is

represented as texleader. If t
a
6 B, ta is also a solution of the

problem considering the leaders. Then we have

ta 6 tex � r, tex 6 texleader, and texleader 6 ta, so there is the

inequation:

texleader 6 ta 6 tex � r 6 texleader � r

Then for Algorithm 2, the extended framework has the

approximation ratio r ¼ ln jEtj. h

10
00

30
00

50
00

70
00

90
00

|W|

50

100

150

200

250

300

350
U

til
ity

Baseline
TTR-ExactPrune
TTR-Greedy

10
00

30
00

50
00

70
00

90
00

|W|

0

50

100

150

200

250

300

350

400

450

T
im

e(
se

cs
)

Baseline
TTR-Exact
TTR-ExactPrune
TTR-Greedy

10
00

30
00

50
00

70
00

90
00

|W|

3

3.5

4

4.5

5

M
em

or
y(

M
B

)

Baseline
TTR-Exact
TTR-ExactPrune
TTR-Greedy

4 8 12 16 20

k

0

50

100

150

200

250

300

U
til

ity

Baseline
TTR-Exact
TTR-Greedy

4 8 12 16 20

k

0

200

400

600

800

1000

1200

1400
T

im
e(

se
cs

)
Baseline
TTR-Exact
TTR-ExactPrune
TTR-Greedy

4 8 12 16 20

k

0

5

10

15

20

25

M
em

or
y(

M
B

)

Baseline
TTR-Exact
TTR-ExactPrune
TTR-Greedy

4 8 12 16 20

|Et|

20

40

60

80

100

120

140

160

180

200

U
til

ity

Baseline
TTR-ExactPrune
TTR-Greedy

4 8 12 16 20

|Et|

0

20

40

60

80

100

120

T
im

e(
se

cs
)

Baseline
TTR-Exact
TTR-ExactPrune
TTR-Greedy

4 8 12 16 20

|Et|

3

3.5

4

4.5

5

5.5

6

M
em

or
y(

M
B

)

Baseline
TTR-Exact
TTR-ExactPrune
TTR-Greedy

(b)

(e)

(h)

(c)

(f)

(i)

(a)

(d)

(g)

Fig. 2 Results on varying |W|, k, and jEtj. a Utility of varying |W|, b time of varying |W|, c memory of varying |W|, d utility of varying k, e time of

varying k, f memory of varying k, g utility of varying jEtj, h time of varying jEtj and i memory of varying jEtj

Table 3 Synthetic dataset

Factor Setting

|W| 1000, 3000, 5000, 7000, 9000

k 4, 8, 12, 16, 20

jEtj 4, 8, 12, 16, 20

ljEwj 2, 4, 6, 8, 10

rjEwj 8, 10, 12, 14, 16

Scalability (|W|) 10K, 30K, 50K, 70K, 90K

Default settings are shown in bold

D. Gao et al.

123

5 Experimental Study

5.1 Experimental Setup

We use a real dataset collected from gMission [16], which

is a research-based general spatial crowdsourcing platform.

In the gMission dataset, every task has a task description, a

location, a radius of the restricted range, and the required

skills. Each worker is also associated with a location, a set

of his/her owning skills, a price, and a capacity of skills

that s/he completes a task. Currently, users often recruit

crowd workers to organize all kinds of activities on the

gMission platform. In this paper, our real dataset includes

the information of 11,205 crowd workers, where the

average number of skills and the average capacity owned

by the workers are 5.46 and 4.18, respectively. We also use

synthetic dataset for evaluation. In the synthetic dataset, the

capacity and the number of skills owned by a worker fol-

low uniform distribution in the range of 1–20, respectively.

Statistics of the synthetic dataset are shown in Table 3,

where we mark our default settings in bold font. In Table 3,

|W| is the number of workers. The parameter k represents

the number of the result teams. jEtj is the average number

of the required skills of the task t. ljEwj and djEwj represent

2 4 6 8 10

μ of |E
w
|

40

60

80

100

120

140

160

180

U
til

ity
Baseline
TTR-ExactPrune
TTR-Greedy

2 4 6 8 10

μ of |E
w
|

0

50

100

150

200

250

T
im

e(
se

cs
)

Baseline
TTR-Exact
TTR-ExactPrune
TTR-Greedy

2 4 6 8 10

μ of |E
w
|

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

M
em

or
y(

M
B

)

Baseline
TTR-Exact
TTR-ExactPrune
TTR-Greedy

8 10 12 14 16

σ of |E
w
|

20

40

60

80

100

120

140

160

180

200

U
til

ity

Baseline
TTR-ExactPrune
TTR-Greedy

8 10 12 14 16

σ of |E
w
|

0

50

100

150

200

250

T
im

e(
se

cs
)

Baseline
TTR-Exact
TTR-ExactPrune
TTR-Greedy

8 10 12 14 16

σ of |E
w
|

3

3.5

4

4.5

5

5.5

M
em

or
y(

M
B

)

Baseline
TTR-Exact
TTR-ExactPrune
TTR-Greedy

10
00

0

30
00

0

50
00

0

70
00

0

90
00

0

|W|

0

10

20

30

40

50

60

U
til

ity

Baseline
TTR-Greedy

10
00

0

30
00

0

50
00

0

70
00

0

90
00

0

|W|

0

5

10

15

20

25

30

35

T
im

e(
se

cs
)

Baseline
TTR-Greedy

10
00

0

30
00

0

50
00

0

70
00

0

90
00

0

|W|

0

5

10

15

20

25

M
em

or
y(

M
B

)

Baseline
TTR-Greedy

(a) (b) (c)

(f)

(i)

(e)

(h)

(d)

(g)

Fig. 3 Results on varying ljEw j, rjEwj, and scalability test. a Utility of

varying ljEw j, b time of varying ljEw j, c memory of varying ljEwj, d

utility of varying rjEw j, e time of varying rjEwj, f memory of varying

rjEw j, g utility of scalability test, h time of scalability test and

i memory of scalability test

Top-k Team Recommendation and Its Variants in Spatial Crowdsourcing

123

the mean and the standard deviation of jEwj in the normal

distribution.

Based on the two-level-based framework, we evaluate

an approximation algorithm (Algorithm 1 ? Algorithm 2),

called TTR-Greedy, and two exact algorithms (Algorithm

1 ? Algorithm 3), called TTR-Exact (which does not use

the proposed pruning rules) and TTR-ExactPrune, and a

baseline algorithm in terms of total utility score, running

time and memory cost, and study the effect of varying

parameters on the performance of the algorithms. The total

utility score is the total price of the top-k teams that we

obtain from the algorithms, since we prove that each team

can keep the same approximate ratio in the framework.

Meanwhile, the baseline algorithm uses a simple random

greedy strategy, which first finds the best team, then ran-

domly removes a worker from the best team from the set of

workers, and iteratively finds the other k � 1 best teams

following the two steps above. The algorithms are imple-

mented in Visual C?? 2010, and the experiments were

performed on a machine with Intel(R) Core(TM) i5

2.40GHz CPU and 4GB main memory.

5.2 Evaluation for TopkTR

In this subsection, we test the performance of our proposed

algorithms for the TopkTR problem through varying dif-

ferent parameters.

Effect of Cardinality of W The results of varying |W| are

presented in Fig. 2a–c. Since TTR-Exact and TTR-Ex-

actPrune return the same utility results, only utility results

of TTR-ExactPrune are plotted. We can first observe that

the utility decreases as |W| increases, which is reasonable as

more high-quality workers can are available. Also, we can

see that TTR-Greedy is nearly as good as the exact algo-

rithms. As for running time, TTR-Exact consumes more

time with more workers due to larger search space while

the TTR-ExactPrune is quite efficient due to its pruning

techniques. The other algorithms do not vary much in

running time. For memory, TTR-ExactPrune is the most

efficient while TTR-Exact and TTR-Greedy are less

efficient.

Effect of Parameter k The results of varying k are presented

in Fig. 2d–f. We can observe that the utility, running time

and memory generally increase as k increases, which is

reasonable as more teams need to be recommended. Again,

we can see that TTR-Greedy is nearly as good as the exact

algorithms but runs much faster. Also, we can see that the

pruning techniques are quite effective as TTR-ExactPrune

is much faster than TTR-Exact. Finally, TTR-Greedy is the

most inefficient in terms of memory consumption.

Effect of the Number of Required Skills in Tasks The

results are presented in Fig. 2g–i. We can see that the

utility values increase first with increasing number of

required skills jEtj but decrease later when jEtj further
increases. The possible reason is that when jEtj is not

large, the required skills are still quite diverse and thus

more workers need to be hired to complete the task as

jEtj increases. However, as jEtj becomes too large, many

workers may use their own multiple skills to complete

the task and thus less workers may be needed. As for

running time and memory, we can observe that the

values generally increase. Again, TTR-ExactPrune is

highly inefficient compared with the other algorithms.

Notice that the exact algorithms run very long time when

jEtj is large, so we do not plot their results when jEtj is
larger than 12.

Effect of the Distribution of the Number of Skills per Each

Worker (l and r) The results are presented in Fig. 3a–f.

4 8 12 16 20

k

0

50

100

150

200

250

300

350

400

450
U

til
ity

Baseline
TTR-ExactPrune
TTR-Greedy

4 8 12 16 20

k

0

50

100

150

200

250

T
im

e(
se

cs
)

Baseline
TTR-Exact
TTR-ExactPrune
TTR-Greedy

4 8 12 16 20

k

2

4

6

8

10

12

14

16

M
em

or
y(

M
B

)

Baseline
TTR-Exact
TTR-ExactPrune
TTR-Greedy

(a) (b) (c)

Fig. 4 Performance on the real dataset. a Utility in real data, b time in real data and c memory in real data

Fig. 5 Results on varying k, |W|, Et and B in the uniform distribution.

a Utility of varying k, b time of varying k, c memory of varying k, d
utility of varying |W|, e utility of varying |W|, f utility of varying |W|, g
utility of varying jEtj, h time of varying jEtj, i utility of varying jEtj,
j utility of varying B, k time of varying B and l memory of varying B

c

D. Gao et al.

123

4 8 12 16 20

k

0

200

400

600

800

1000

1200

1400
T

im
e(

se
cs

)

Baseline
TTR-Exact
TTR-ExactPrune
TTR-Greedy

4 8 12 16 20

k

0

5

10

15

20

25

M
em

or
y(

M
B

)

Baseline
TTR-Exact
TTR-ExactPrune
TTR-Greedy

4 8 12 16 20

k

0

50

100

150

200

250

300

U
til

ity

Baseline
TTR-Exact
TTR-Greedy

10
00

30
00

50
00

70
00

90
00

|W|

0

50

100

150

200

250

300

350

400

450

T
im

e(
se

cs
)

Baseline
TTR-Exact
TTR-ExactPrune
TTR-Greedy

10
00

30
00

50
00

70
00

90
00

|W|

3

3.5

4

4.5

5
M

em
or

y(
M

B
)

Baseline
TTR-Exact
TTR-ExactPrune
TTR-Greedy

10
00

30
00

50
00

70
00

90
00

|W|

50

100

150

200

250

300

350

U
til

ity

Baseline
TTR-ExactPrune
TTR-Greedy

4 8 12 16 20

|E
t
|

0

20

40

60

80

100

120

T
im

e(
se

cs
)

Baseline
TTR-Exact
TTR-ExactPrune
TTR-Greedy

4 8 12 16 20

|E
t
|

3

3.5

4

4.5

5

5.5

6

M
em

or
y(

M
B

)

Baseline
TTR-Exact
TTR-ExactPrune
TTR-Greedy

4 8 12 16 20

|E
t
|

20

40

60

80

100

120

140

160

180

200
U

til
ity

Baseline
TTR-ExactPrune
TTR-Greedy

10
00

0

30
00

0

50
00

0

70
00

0

90
00

0

|W|

0

5

10

15

20

25

30

35

T
im

e(
se

cs
)

Baseline
TTR-Greedy

10
00

0

30
00

0

50
00

0

70
00

0

90
00

0

|W|

0

5

10

15

20

25

M
em

or
y(

M
B

)

Baseline
TTR-Greedy

10
00

0

30
00

0

50
00

0

70
00

0

90
00

0

|W|

0

10

20

30

40

50

60

U
til

ity

Baseline
TTR-Greedy

(a)

(d) (e) (f)

(i)(h)

(k) (l)

(g)

(j)

(b) (c)

Top-k Team Recommendation and Its Variants in Spatial Crowdsourcing

123

2 4 6 8 10

μ of |E
w
|

0

50

100

150

200

250
T

im
e(

se
cs

)

Baseline
TTR-Exact
TTR-ExactPrune
TTR-Greedy

2 4 6 8 10

μ of |E
w
|

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

M
em

or
y(

M
B

)

Baseline
TTR-Exact
TTR-ExactPrune
TTR-Greedy

2 4 6 8 10

μ of |E
w
|

40

60

80

100

120

140

160

180

U
til

ity

Baseline
TTR-ExactPrune
TTR-Greedy

8 10 12 14 16

σ of |E
w
|

0

50

100

150

200

250

T
im

e(
se

cs
)

Baseline
TTR-Exact
TTR-ExactPrune
TTR-Greedy

8 10 12 14 16

σ of |E
w
|

3

3.5

4

4.5

5

5.5
M

em
or

y(
M

B
)

Baseline
TTR-Exact
TTR-ExactPrune
TTR-Greedy

8 10 12 14 16

σ of |E
w
|

20

40

60

80

100

120

140

160

180

200

U
til

ity

Baseline
TTR-ExactPrune
TTR-Greedy

4 8 12 16 20

k

0

50

100

150

200

250

T
im

e(
se

cs
)

Baseline
TTR-Exact
TTR-ExactPrune
TTR-Greedy

4 8 12 16 20

k

2

4

6

8

10

12

14

16

M
em

or
y(

M
B

)

Baseline
TTR-Exact
TTR-ExactPrune
TTR-Greedy

4 8 12 16 20

k

0

50

100

150

200

250

300

350

400

450
U

til
ity

Baseline
TTR-ExactPrune
TTR-Greedy

0.
2

0.
3

0.
4

0.
5

0.
6

B

0

100

200

300

400

500

600

U
til

ity

TTRL-Greedy
TTRL-Baseline

0.
2

0.
3

0.
4

0.
5

0.
6

B

1

1.5

2

2.5

3

T
im

e(
se

cs
)

TTRL-Greedy
TTRL-Baseline

0.
2

0.
3

0.
4

0.
5

0.
6

B

51

51.5

52

52.5

53

53.5

54

M
em

or
y(

M
B

)

TTRL-Greedy
TTRL-Baseline

(a)

(d) (e) (f)

(i)(h)

(k) (l)

(g)

(j)

(b) (c)

D. Gao et al.

123

We can first observe that the utility value first increases as

l and r increase and then drops when l and r further

increase. The possible reason is that when l and r first

increase, the skills of workers are more diverse and may

not cover the requirements of the tasks and thus more

workers are still needed. However, as l and r further

increase, many workers can utilize their multiple skills and

thus less workers are needed. As for running time, TTR-

Exact is again very inefficient. Finally, for memory, TTR-

ExactPrune is more efficient than TTR-Exact and TTR-

Greedy.

Scalability The results are presented in Fig. 3g–i. Since the

exact algorithms are not efficient enough, we only study

the scalability of TTR-Greedy. We can see that the running

time and memory consumption TTR-Greedy is still quite

small when the scale of data is large.

Real Dataset The results on real dataset are shown in

Fig. 4a–c, where we vary k. We can observe similar pat-

terns as those in Fig. 2d–f. Notice that the exact algorithms

are not efficient enough on the dataset, so no result of them

when k is larger than 8 is presented.

Conclusion For utility, TTR-Greedy is nearly as good as

the exact algorithms, and TTR-Greedy and the exact

algorithms all perform better than the baseline algorithm

do. As for running time, TTR-Exact is the most inefficient,

while TTR-ExactPrune is much more efficient than TTR-

Exact due to its pruning techniques but is still slower than

TTR-Greedy.

5.3 Evaluation for TopkTRL

In this subsection, we test the performance of our proposed

algorithms for the TopkTRL problem through varying

different parameters. In particular, we extend the baseline

algorithm to TTRL-Baseline. The TTRL-Baseline algo-

rithm tries to find the leader for each team gained from the

baseline algorithm and abandon the team without leader

until there are k teams. We compare TTRL-Baseline with

the greedy algorithm (Algorithm 4) called TTRL-Greedy in

terms of total utility score, running time and memory cost.

We use the real dataset from gMission to generate the

graph of social network. Specifically, the collaborative cost

of worker w1 and w2 is calculated by
MAXc�cðw1;w2Þ

MAXc
, where

cðw1;w2Þ is the number of the times that w1 and w2 have

cooperated, and MAXc is the maximal number of the times

that any two workers have cooperated. For the synthetic

dataset, we generate the graph where the weight of edges

follows either normal or uniform distribution in the range

of 0–1. According to the statistics of the real dataset, we set

the mean value of the normal distribution as 0.4, and the

standard deviation as 0.3. The experimental results are

shown as follows.

Effect of Parameter k The results of varying k are presented

in Fig. 5a–c when following the uniform distribution and

Fig. 6a–c when following the normal distribution. We can

observe that the utility of TTRL-Greedy is much smaller

than that of TTRL-Baseline. And TTRL-Greedy spends

more time and memory than TTRL-Baseline in both

distributions.

Effect of Parameter |W| The results of varying |W| are

presented in Fig. 5d–f when following the uniform distri-

bution and Fig.6d–f when following the normal distribu-

tion. We can observe that the utility decreases as more

efficient workers join, and the effect of |W|’s growth on the

running time is not obvious. We can also find that the

running time of the uniform distribution is larger than that

of the normal distribution, and a possible reason is that the

number of edges with low weight in the normal distribution

is larger than that in the uniform distribution. As a result it

takes more time to find the worker with low collaborative

cost.

Effect of Parameter jEtj The results of varying Et are

presented in Fig. 5g–i when following the uniform distri-

bution and Fig. 6g–i when following the normal distribu-

tion. We can observe that the utility, running time and

memory increase as jEtj increases. The running time and

memory of TTRL-Greedy increase when jEtj is greater

than 12. However, considering that jEtj would not be too

large the TTRL-Greedy algorithm is still efficient.

Effect ofParameter BThe results of varyingB are presented in

Fig. 5j–lwhen following the uniformdistribution andFig. 6j–l

when following the normal distribution. We can observe that

the utility ofTTRL-Greedy is not affected by the growth of the

budget, because TTRL-Greedy has already tried to find the

teams with low utility. However, in TTRL-Baseline the

growth of budget relaxes the restrictions to select the workers,

meaning that some better workers can be added. Meanwhile,

in terms of utility, TTRL-Greedy always performs better. And

for the running time and memory, TTRL-Greedy performs

better when B is large in uniform distribution.

Conclusion TTRL-Greedy outperforms TTRL-Baseline

significantly in terms of utility. Meanwhile the efficiency of

the proposed framework is good, though sometimes it is

less efficient than the baseline algorithm.

bFig. 6 Results on varying k, |W|, Et and B in the normal distribution.

a Utility of varying k, b time of varying k, c memory of varying k, d
utility of varying |W|, e utility of varying |W|, f utility of varying |W|, g
utility of varying jEtj, h time of varying jEtj, i utility of varying jEtj,
j utility of varying B, k time of varying B and l memory of varying B

Top-k Team Recommendation and Its Variants in Spatial Crowdsourcing

123

6 Related Work

In this section, we review related works from two cate-

gories, spatial crowdsourcing and team formation.

6.1 Spatial Crowdsourcing

Crowdsourcing has been widely studied in [1, 2, 17–21].

Most works on spatial crowdsourcing study the task

assignment problem. Kazemi and Shahabi [6] and To et al.

[10] aim to maximize the number of tasks that are assigned

to workers. Furthermore, the conflict-aware spatial task

assignment problems are studied [22–24]. Recently, the

issue of online task assignment in dynamic spatial crowd-

sourcing scenarios is proposed [7]. Kazemi et al. [8] further

studies the reliability of crowd workers based on [6]. To

et al. [9] studies the location privacy protection problem for

the workers. Kazemi et al. [8] studies the route planning

problem for a crowd worker and tries to maximize the

number of completed tasks. The corresponding online

version of [8] is studied in [25]. Wang et al. [3] studies the

entity resolution problem in crowdsourcing. And Franklin

et al. [1] studies the problem of using crowd workers to

answer queries which is difficult for machine. In addition,

Liu et al. [2] proposes a crowdsourcing system to support

the deployment of various crowdsourcing applications.

Although the aforementioned works study the task alloca-

tion problem on spatial crowdsourcing, they always assume

that spatial crowdsourcing tasks are simple micro-tasks and

ignore that some real spatial crowdsourced tasks often need

to be collaboratively completed by a team of crowd

workers.

6.2 Team Formation Problem

Another closely related topic is the team formation prob-

lem [14], which aims to find the minimum cost team of

experts according to skills and relationships of users in

social networks. Anagnostopoulos et al. [26, 27] further

studies the workload balance issue in the static and

dynamic team formation problem. The capacity constraint

of experts is also considered as an variant of the team

formation problem in [15]. Moreover, the problems of

discovering crowd experts in social media market are also

studied [28, 29]. Rangapuram et al. [30] studies the team

formation problem in the densest subgraphs. And Rahman

et al. [31] tries to analyze the worker’s skills through the

record of participated tasks. Feng et al. [32] studies the

variant problem to maximum the influence of the team. The

above works only consider to find the minimum cost team,

namely top-1 team, instead of top-k teams without free

riders. In addition, we address the spatial scenarios rather

than the social networks scenarios.

7 Conclusion

In this paper, we study a novel spatial crowdsourcing

problem, called the Top-k team recommendation in spatial

crowdsourcing (TopkTR) and its variant, called the

TopkTRL problem. Then, we prove that the two proposed

problems are NP-hard. To address the TopkTR problem,

we design a two-level-based framework, which not only

includes an exact algorithm with pruning techniques to get

the exact solution but also seamlessly integrates an

approximation algorithm to guarantee theoretical approxi-

mation ratio. Furthermore, the aforementioned framework

can easily be extended to address the TopkTRL problem

with the same approximation ratio. Finally, we conduct

extensive experiments which verify the efficiency and

effectiveness of the proposed approaches.

Acknowledgements This work is supported in part by the National

Science Foundation of China (NSFC) under Grant No. 61502021,

61328202, and 61532004, National Grand Fundamental Research 973

Program of China under Grant 2012CB316200, the Hong Kong RGC

Project N_HKUST637/13, NSFC Guang Dong Grant No. U1301253,

Microsoft Research Asia Gift Grant, Google Faculty Award 2013.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

1. Franklin MJ, Kossmann D, Kraska T, Ramesh S, Xin R (2011)

Crowddb: answering queries with crowdsourcing. In: SIGMOD,

pp 61–72

2. Liu X, Lu M, Ooi BC, Shen Y, Wu S, Zhang M (2012) CDAS: a

crowdsourcing data analytics system. PVLDB 5(10):1040–1051

3. Wang J, Kraska T, Franklin MJ, Feng J (2012) Crowder:

crowdsourcing entity resolution. PVLDB 5(11):1483–1494

4. Tong Y, Cao CC, Chen L (2014) TCS: efficient topic discovery

over crowd-oriented service data. In: SIGKDD. 861–870

5. Tong Y, Cao CC, Zhang CJ, Li Y, Chen L (2014) Crowdcleaner:

data cleaning for multi-version data on the web via crowd-

sourcing. In: ICDE, pp 1182–1185

6. Kazemi L, Shahabi C (2012) Geocrowd: enabling query

answering with spatial crowdsourcing. In: GIS, pp 189–198

7. Tong Y, She J, Ding B, Wang L, Chen L (2016) Online mobile

micro-task allocation in spatial crowdsourcing. In: ICDE,

pp 49–60

8. Kazemi L, Shahabi C, Chen L (2013) Geotrucrowd: trustworthy

query answering with spatial crowdsourcing. In: GIS, pp 304–313

D. Gao et al.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

9. To H, Ghinita G, Shahabi C (2014) A framework for protecting

worker location privacy in spatial crowdsourcing. PVLDB

7(10):919–930

10. To H, Shahabi C, Kazemi L (2015) A server-assigned spatial

crowdsourcing framework. ACM Trans Spat Algorithm Syst

1(1):2

11. She J, Tong Y, Chen L, Cao CC (2016) Conflict-aware event-

participant arrangement and its variant for online setting. IEEE

Trans Knowl Data Eng 28(9):2281–2295

12. Tong Y, She J, Ding B, Chen L, Wo T, Xu K (2016) Online

minimum matching in real-time spatial data: experiments and

analysis. PVLDB 9(12):1053–1064

13. Gao D, Tong Y, She J, Song T, Chen L, Xu K (2016) Top-k team

recommendation in spatial crowdsourcing. In: WAIM,

pp 735–746

14. Lappas T, Liu K, Terzi E (2009) Finding a team of experts in

social networks. In: SIGKDD, pp 467–476

15. Majumder A, Datta S, Naidu K (2012) Capacitated team for-

mation problem on social networks. In: SIGKDD, pp 1005–1013

16. Chen Z, Fu R, Zhao Z, Liu Z, Xia L, Chen L, Cheng P, Cao CC,

Tong Y, Zhang CJ (2014) gmission: a general spatial crowd-

sourcing platform. PVLDB 7(13):1629–1632

17. Venetis P, Garcia-Molina H, Huang K, Polyzotis N (2012) Max

algorithms in crowdsourcing environments. In: WWW,

pp 989–998

18. Howe J (2009) Crowdsourcing: why the power of the crowd is

driving the future of business. Three Rivers Press, New York,

p 311

19. Thebault-Spieker J, Terveen LG, Hecht B (2015) Avoiding the

south side and the suburbs: the geography of mobile crowd-

sourcing markets. In: CSCW, pp 265–275

20. Karger DR, Oh S, Shah D (2014) Budget-optimal task allocation

for reliable crowdsourcing systems. Oper Res 62(1):1–24

21. Alfarrarjeh A, Emrich T, Shahabi C (2015) Scalable spatial

crowdsourcing: a study of distributed algorithms. In: MDM,

pp 134–144

22. She J, Tong Y, Chen L (2015) Utility-aware social event-par-

ticipant planning. In: SIGMOD, pp 1629–1643

23. She J, Tong Y, Chen L, Cao CC (2015) Conflict-aware event-

participant arrangement. In: ICDE, pp 735–746

24. Tong Y, She J, Meng R (2016) Bottleneck-aware arrangement

over event-based social networks: the max–min approach. World

Wide Web J 19(6):1151–1177

25. Li Y, Yiu M, Xu W (2015) Oriented online route recommenda-

tion for spatial crowdsourcing task workers. In: SSTD,

pp 861–870

26. Anagnostopoulos A, Becchetti L, Castillo C, Gionis A, Leonardi

S (2010) Power in unity: forming teams in large-scale community

systems. In: CIKM, pp 599–608

27. Anagnostopoulos A, Becchetti L, Castillo C, Gionis A, Leonardi

S (2012) Online team formation in social networks. In: WWW,

pp 839–848

28. Cao CC, She J, Tong Y, Chen L (2012) Whom to ask? Jury

selection for decision making tasks on micro-blog services.

PVLDB 5(11):1495–1506

29. Cao CC, Tong Y, Chen L, Jagadish HV (2013) Wisemarket: a

new paradigm for managing wisdom of online social users. In:

SIGKDD, pp 455–463

30. Rangapuram SS, Bühler T, Hein M (2013) Towards realistic team

formation in social networks based on densest subgraphs. In:

WWW, pp 1077–1088

31. Rahman H, Thirumuruganathan S, Roy SB, Amer-Yahia S, Das

G (2015) Worker skill estimation in team-based tasks. PVLDB

8(11):1142–1153

32. Feng K, Cong G, Bhowmick SS, Ma S (2014) In search of

influential event organizers in online social networks. In: SIG-

MOD, pp 63–74

Top-k Team Recommendation and Its Variants in Spatial Crowdsourcing

123

	Top-k Team Recommendation and Its Variants in Spatial Crowdsourcing
	Abstract
	Introduction
	Problem Statement
	TopkTR Problem
	TopkTRL Problem

	A Two-Level-Based Framework
	Overview of the Framework
	Top-1 Approximation Algorithm
	Top-1 Exact Algorithm

	Solutions of TopkTRL
	Experimental Study
	Experimental Setup
	Evaluation for TopkTR
	Evaluation for TopkTRL

	Related Work
	Spatial Crowdsourcing
	Team Formation Problem

	Conclusion
	Acknowledgements
	References

